Derived equivalences for cotangent bundles of Grassmannians via categorical 𝔰𝔩2 actions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DERIVED EQUIVALENCES FOR COTANGENT BUNDLES OF GRASSMANNIANS VIA CATEGORICAL sl2 ACTIONS

We construct an equivalence of categories from a strong categorical sl(2) action, following the work of Chuang-Rouquier. As an application, we give an explicit, natural equivalence between the derived categories of coherent sheaves on cotangent bundles to complementary Grassmannians.

متن کامل

DERIVED EQUIVALENCES FOR COTANGENT BUNDLES OF GRASSMANNIANS FROM CATEGORICAL sl2 ACTIONS

We construct an equivalence of categories from a strong categorical sl(2) action, following the work of Chuang-Rouquier. As an application, we answer a question of Namikawa and give an explicit equivalence of categories between coherent sheaves on cotangent bundles to complementary Grassmannians.

متن کامل

ar X iv : 0 90 2 . 17 97 v 2 [ m at h . A G ] 1 9 N ov 2 00 9 DERIVED EQUIVALENCES FOR COTANGENT BUNDLES OF GRASSMANNIANS VIA CATEGORICAL sl 2 ACTIONS

We construct an equivalence of categories from a strong categorical sl(2) action, following the work of Chuang-Rouquier. As an application, we give an explicit, natural equivalence between the derived categories of coherent sheaves on cotangent bundles to complementary Grassmannians.

متن کامل

Coherent Sheaves and Categorical

We introduce the concept of a geometric categorical sl2 action and relate it to that of a strong categorical sl2 action. The latter is a special kind of 2-representation in the sense of Rouquier. The main result is that a geometric categorical sl2 action induces a strong categorical sl2 action. This allows one to apply the theory of strong sl2 actions to various geometric situations. Our main e...

متن کامل

COHERENT SHEAVES AND CATEGORICAL sl2 ACTIONS

We introduce the concept of a geometric categorical sl2 action and relate it to that of a strong categorical sl2 action. The latter is a special kind of 2-representation in the sense of Rouquier. The main result is that a geometric categorical sl2 action induces a strong categorical sl2 action. This allows one to apply the theory of strong sl2 actions to various geometric situations. Our main e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2013

ISSN: 1435-5345,0075-4102

DOI: 10.1515/crelle.2011.184